
DRAM-like Architecture with Asynchronous Refreshing for
Continual Relation Extraction

Tianci Bu
College of Systems Engineering
National University of Defense

Technology
Changsha, Hunan, China
btc010001@gmail.com

Kang Yang
School of Information

Renmin University of China
Beijing, China

y1127238112@gmail.com

Wenchuan Yang
College of Systems Engineering
National University of Defense

Technology
Changsha, Hunan, China

wenchuanyang97@163.com

Jiawei Feng
College of Systems Engineering
National University of Defense

Technology
Changsha, Hunan, China
fengjiawei126@gmail.com

Xiaoyu Zhang
College of Systems Engineering
National University of Defense

Technology
Changsha, Hunan, China

xiaoyu_zhang2023@163.com

Xin Lu∗
College of Systems Engineering
National University of Defense

Technology
Changsha, Hunan, China
xinlu.lab@outlook.com

ABSTRACT
Continual Relation Extraction (CRE) has found widespread web
applications (e.g., search engines) in recent times. One significant
challenge in this task is the phenomenon of catastrophic forget-
ting, where models tend to forget earlier information. Existing
approaches in this field predominantly rely on memory-based meth-
ods to alleviate catastrophic forgetting, which overlooks the inher-
ent challenge posed by the varying memory requirements of differ-
ent relations and the need for a suitable memory refreshing strategy.
Drawing inspiration from the mechanisms of Dynamic Random
Access Memory (DRAM), our study introduces a novel CRE archi-
tecture with an asynchronous refreshing strategy to tackle these
challenges. We first design a DRAM-like architecture, comprising
three key modules: the perceptron, controller, and refresher. This
architecture dynamically allocates memory, enabling the consolida-
tion of well-remembered relations while allocating additional mem-
ory for revisiting poorly learned relations. Furthermore, we propose
a compromising asynchronous refreshing strategy to find the pivot
between over-memorization and overfitting, which focuses on the
current learning task and mixed-memory data asynchronously. Our
proposed method has experimented on two benchmarks and over-
all outperforms ConPL (the SOTA method) by an average of 1.50%
on accuracy, which demonstrates the efficiency of the proposed
architecture and refreshing strategy.

CCS CONCEPTS
• Computing methodologies→ Information extraction;

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0171-9/24/05
https://doi.org/10.1145/3589334.3645621

KEYWORDS
Continual Relation Extraction; Dynamic Random Access Memory;
Memory Allocation; Refreshing Strategy
ACM Reference Format:
Tianci Bu, Kang Yang, Wenchuan Yang, Jiawei Feng, Xiaoyu Zhang, and Xin
Lu. 2024. DRAM-like Architecture with Asynchronous Refreshing for Con-
tinual Relation Extraction. In Proceedings of the ACM Web Conference 2024
(WWW ’24), May 13–17, 2024, Singapore, Singapore. 10 pages. https://doi.
org/10.1145/3589334.3645621

1 INTRODUCTION
In pursuit of high-quality analysis of the exploding textual knowl-
edge and construction of web applications, such as web knowledge
graphs[1, 22], relation extraction attempts to automatically extract
relations between two entities in a text. For example, given the
text "On January 4, 1643, Isaac Newton was born in a small village
in England" and the entity pair ("Isaac Newton", "England"), the
relation extraction model should extract the relation "was born in",
and this underlying capability allows it to underpin a wide range
of downstream tasks [6, 31, 38].

Most of the traditional relation extraction methods focus on ex-
tracting a given set of predefined relations [10, 17, 24], and it plainly
limits the usage of these methods in practical applications, where
new relations keep emerging in the real world. The demands of real-
world drive predecessors to pioneer practical continual learning
settings [32, 33], which have been used in open learning scenar-
ios to form the paradigm of continual relation extraction (CRE)
[9, 35, 36]. CRE is considered an adaptive algorithm for learning
a series of tasks including different new relations and maintain-
ing memory of learned knowledge. Compared to conventional RE
tasks, CRE tends to obtain a more stable understanding of both
emerging and learned relations [4]. However, it suffers from the
generic problem of catastrophic forgetting of continual learning
[8, 20, 21, 28], in which knowledge learned from previous tasks is
abruptly forgotten when learning from new observations. A large
number of studies [4, 15, 37] have attempted to solve this problem
and the main approaches can be categorized into regularization
methods [39], dynamic structure methods [7], and memory-based

https://orcid.org/0009-0001-2005-1441
https://orcid.org/0009-0000-5489-516X
https://orcid.org/0000-0003-3194-1690
https://orcid.org/0009-0005-4316-3904
https://orcid.org/0009-0001-8502-6087
https://orcid.org/0000-0002-3547-6493
https://doi.org/10.1145/3589334.3645621
https://doi.org/10.1145/3589334.3645621
https://doi.org/10.1145/3589334.3645621

WWW ’24, May 13–17, 2024, Singapore, Singapore Tianci Bu et al.

r1

r2
r3

Dynamic

Allocation

r1
r2
r3

Memory Allocation

r2
r3

r1

+ OR

Sampling

+ +

+ +

Learned relations
Asynchronous Sampling

Equal

Allocation

+ +

Full-memory

+

×

r1 r2 r3 r4

Training Data Stream

Learned relations

After Refreshing

New Task (r4)

Asynchronous
Sampling

×

×
×

×

Sample
Full-memory

×

Mixed-meory Data

Figure 1: Differences between traditional continual relation
extraction methods and our approach. Top: traditional meth-
ods allocate equal samples for seen relations with different
performances and use either a centralized or distributed re-
freshing strategy. Bottom: Our approach dynamically allo-
cates memory for different relations according to perfor-
mance and applies asynchronous refreshing to learn the cur-
rent task while retaining the memory of learned knowledge.
The curves on the right show the performance for all rela-
tions after learning a new relation (r4) and refreshing.

methods [13, 41]. In the field of CRE, memory-based approaches
are considered promising, which alleviate forgetting by storing
memory samples of seen relations and using a refreshing strategy
(also named a replay strategy). Recent studies [3, 27] have pivoted
towards adapting these methods to few-shot learning scenarios.

While memory-based approaches utilize memory refresh to par-
tially alleviate catastrophic forgetting, their memory processing
predominantly relies on static storage, which applies an average
allocation of memory samples. The allocation of the same sam-
ple size to all seen relations merely promotes the consolidation of
well-remembered relations but hinders the revisitation of poorly
remembered relations. Fig. 1 illustrates equal allocation for each
relation in the upper left part, which is in contrast to the inherent
imbalance in learned relations, presenting a formidable challenge
in achieving the allocation of memory samples. Moreover, most of
the extant methods use a monotonic refresh strategy. The approach
[35] refreshes full memory alone can potentially lead to the model’s
detachment from acquiring knowledge, referring to the phenom-
enon called over-memorization. Conversely, some other methods
[9] employ an excessive integration of memory refreshing with
training samples which may result in over-fitting. As shown in the
upper right part of Fig. 1, these monotonous refreshing strategies
make it difficult for the model to maintain the memory of learned
knowledge while observing new tasks.

To address the aforementioned challenges, we introduce an in-
novative solution involving Dynamic Random Access Memory
(DRAM) in the context of a CRE scenario. DRAM is a memory
hardware capable of dynamic random data access. However, its
physical characteristics give rise to the issue of leakage current,
which entails the gradual loss of charge over time. To mitigate this
problem, DRAM employs various refreshing mechanisms (e.g. asyn-
chronous refreshing) to replenish the charge and prevent data loss.
Notably, the loss of charge in DRAM parallels the gradual forgetting
of previously learned parameters in the CRE model. Both scenarios

involve memory refreshing as a solution, making the incorporation
of DRAM a natural solution to the challenges previously discussed.

Incorporating DRAM into CRE scenarios, we propose a DRAM-
like Architecture with Asynchronous Refreshing (DAAR) to extract
relations in the continual few-shot learning setting. Our method
can be broken down into two key components: the DRAM-like ar-
chitecture and the asynchronous refreshing strategy. (1) DRAM-like
Architecture: To address the conflict between an inherent imbalance
in learned relation and the unbiased allocation of memory samples
to seen relations, we devise a DRAM-like architecture consisting
of three modules: the perceptron, controller, and refresher. These
modules serve to quantify and transform the intrinsic imbalance
in relational memory into dynamic memory sample storage, as
depicted in the lower part of Fig. 1. (2) Dealing with the diversity of
refreshing methods and the issues of over-memorization and over-
fitting in existing approaches is another challenge. Our designed
asynchronous refreshing strategy in CRE alleviates the problem
of over-memorization and over-fitting by focusing on current task
learning and asynchronously training mixed-memory data. Asyn-
chronous refreshing has also been proven in experiments to be
effective on several models. Meanwhile, we have detailed the exist-
ing refresh strategies in CRE, which are categorized into centralized,
distributed refresh, and hybrid refreshing.

In summary, the contributions of this work are as follows:

• We bridge the DRAM mechanism with CRE scenario. Our
innovative proposal introduces a DRAM-like architecture,
which effectively addresses the challenge of relational mem-
ory imbalance and dynamically allocates memory samples.

• Different from traditional memory refreshing, we devise an
asynchronous refresh strategy for guiding the refreshing of
dynamic memory samples and further provide a theory that
explains existing refresh strategies.

• Extensive experiments are carried out on two benchmarks,
i.e. FewRel [11] and TACRED [40], where ourmethod achieves
promising relation extraction results for each task.

2 RELATEDWORK
In this section, we summarize the literature reviews in three areas:

Continual Relation Extraction. Past research in this domain
can be broadly delineated into three primary strategies: (1) Regu-
larization methods ([15, 18, 29, 39]), which constrain the updates
to the neural weights of preceding tasks. (2) Dynamic structural
methods, introducing structural modifications like module addi-
tions to learn new tasks without compromising previously acquired
knowledge. Notable examples include [7, 30, 37]. (3) Memory-based
methods have proven promising in the field of natural language
processing [2, 4, 13, 41], which prevents catastrophic forgetting
by selectively archiving and refreshing samples from earlier tasks.
For instance, RP-CRE [4] refines subsequent sample embeddings
by the prototype of all observed relations. EDRA [27] incorporates
embedding space regularization and data augmentation to handle
the incompatibility. Notwithstanding their merits, a common limi-
tation of these methods is their reliance on static memory, leading
to an arguably inequitable consolidation of memories. It is worth
noting that the memory-based methods are conceptually related to
recent rehearsal learning[34, 42] to some extent.

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction WWW ’24, May 13–17, 2024, Singapore, Singapore

Refreshing Strategy. We offer a novel framework for classi-
fying memory-based models based on refreshing strategies, en-
capsulating existing models into three overarching paradigms: (1)
Centralized refreshing was used often in slightly earlier work [14]
to create an isolated memory batch designated for centralized re-
play. More contemporary studies, such as those by Wang et al.
[35], continue to harness this approach. (2) Distributed refreshing
integrates memory across the extent of individual training data
sets. Earlier GEM [19] dispersed the previous task to a new task by
constraining the gradient to learn a subset of correlations common
to a set of distributions. After this, AGEM [2] optimizes it. In re-
cent years, Qin et.al. [27] have similarly used distributed refreshing
to replay episode memories. (3) Hybrid refreshing is generally a
mix of centralized and distributed refreshing such as asynchronous
refresh, etc. Chen et al. [3] update the prototype parameters by
the centralized refreshing strategy and adept distributed refreshing
strategy for encoder parameters.

Analogical Modeling. Analogical modeling methods are a
slightly broader topic and are widely used in various disciplines.
Here, we describe only some analogical modeling methods related
to computers and artificial intelligence. Analogical modeling ap-
proaches draw on the laws and mechanisms of natural ecosystems
[23, 25], abstracting the problem to the interactions and effects of
the various elements of the ecosystem. Other approaches, grounded
in tangible physical and mathematical processes [12, 16], recast
problems to align with the underlying laws and models of these do-
mains. Interdisciplinary analogical modeling incorporates insights
and techniques from different fields and is a powerful tool for solv-
ing single-domain problems. For example, [9] introduced episodic
memory activation and reconsolidation for CRE tasks inspired by
human long-term memory formation.

3 METHODS
3.1 Problem Definition and Background
This section includes the generic problem definition and the back-
ground knowledge about Dynamic RandomAccessMemory (DRAM).

Problem definition. In the context of CRE, we consider a se-
quence of 𝑛 tasks, denoted as {T1,T2, ...,T𝑛}. Each task T𝑘 (𝑘 ∈
[1, 2, ..., 𝑛]) is a few-shot supervised learning task comprising train-
ing, validation, and testing datasets, symbolized asC (𝑘)

train, C
(𝑘)
valid, C

(𝑘)
test ,

respectively. Each dataset contains relation set 𝑅 (𝑘) delineating the
relations within and labeled instances {𝑠𝑖 , 𝑦𝑖 }, where 𝑦𝑖 is a relation
label corresponding to the sentence 𝑠𝑖 . The aim is to architect a ver-
satile classification model, 𝑓 , capable of observing task T (𝑘) in step
𝑘 and adeptly handling the antecedent 𝑘 − 1 tasks. Performance of
this model 𝑓 is evaluated on the test sets {C (1)

test , ..., C
(𝑘−1)
test }, aiming

to capture the effect of model memorization on 𝑘 − 1 tasks.
Different from previous well-performing memory-based work

[3, 4, 27], we introduce a dynamic episodic memory framework, de-
noted as M = {M1,M2, . . .}, where each M𝑘 is constructed from
the corresponding task T𝑘 . Notably, the number of samples stored
for each relation withinM𝑘 is variable. This design is inspired by
the human cognitive process, where attention is selectively allo-
cated to different memories, thereby introducing a bias towards
relations that have historically poor-trained.

DRAM. As shown in Fig. 2, memory cells in a DRAM array
are arranged in a rectangle, and each memory cell consists of a
capacitor and an access transistor. Due to the physical properties
of the capacitor, leakage current is generated and causes the charge
to be lost over time. When this charge dwindles below a critical
threshold, the DRAM’s ability to discern is compromised, ultimately
resulting in data corruption. The detection of leakage current of
contemporary DRAM cells involves a synergistic interplay between
lasers and detectors. Upon surpassing the established threshold,
the leakage current is transmitted to a controller, prompting a
refresh command. During the DRAM refresh process, the original
data is first read, and the capacitor level is compared with the
reference level to write back the data, which is like a memory
replay operation.

The working mode of DRAM is similar to CRE tasks in many
aspects, such as leakage current and catastrophic forgetting, same
refreshing strategies, etc. Drawing parallels from these observations,
we devised a DRAM-like structure using analogy modeling, as
elucidated in Fig. 2.

3.2 DRAM-like Architecture
Drawing inspiration from DRAM, we propose a novel architecture
endowed with the capability of dynamically replaying memory
while maintaining memorization of previously learned knowledge
in the domain of continual learning. This advancement augments
memory utility, fortifying the learning process as new tasks emerge.

Based Module. (1)Encoder. we use BERT [5] as the base model
which feeds a sentence 𝑠 with a head entity 𝑒ℎ and a tail entity 𝑒𝑡 . To
enhance the representation of input sentences, we adept the specific
input from [3], which is described as 𝑠input = { [CLS], 𝑒ℎ ,[MASK], 𝑒𝑡 ,
[SEP], 𝑠 , [SEP] }. We can obtain the contextualized representation
of input sentences. The [MASK] token can be considered as the
relational representation. (2)Prototype classifier with memory. pro-
totype is initialized by the aggregation of all current task samples
and updated in the subsequent training process. Specifically, the
current task C (𝑘)

train = {𝐶𝑟1
𝑡 ,𝐶

𝑟2
𝑡 , ...,𝐶

𝑟𝑁
𝑡 } which describe the 𝑘𝑡ℎ task

train set with 𝑁 relations set 𝑅𝑘train = {𝑟1, 𝑟2, ..., 𝑟𝑁 }, is aggregated
to calculate the prototypical representation P𝑗 of each class.

P𝑖 =
1

|𝐶𝑖
𝑡 |

∑︁
𝑠𝑖 ∈𝐶𝑖

𝑡

Encoder(𝑠𝑖) (1)

where 𝐶𝑟𝑖
𝑡 ∈ C (𝑘)

train is train data of the 𝑖𝑡ℎ relation in the 𝑘𝑡ℎ task
train set and 𝑠𝑖 is the instance in 𝐶

𝑟𝑖
𝑡 . We can obtain the current

prototype representation I𝑘 = {P1,P2, ...} corresponding the cur-
rent task C𝑘

train. Upon the arrival of a new task, prototypes I𝑘 are
initialized; subsequently, these prototypes I𝑘 are updated only in
the training process with new task data and through memory re-
play. Different from the approach delineated in [3], our approach
does not employ prototype memory, thus providing more room to
increase the number of samples memorized for each relation.

Perceptron. The perceptron module plays a pivotal role in our
setup, adept at evaluating the impact of each observed relation, and
further generating a perceptive message via linear transformation.
As we anticipate the arrival of a task T𝑘 , the perceptron takes
the initiative to procure a test dataset encompassing all previously

WWW ’24, May 13–17, 2024, Singapore, Singapore Tianci Bu et al.

DRAM
Cell

DRAM Array

Controller

Detector
Laser Ampl.

Refresh

Commands

𝑒𝑒−𝑒𝑒−𝑒𝑒−𝑒𝑒− 𝑒𝑒−𝑒𝑒−
𝑒𝑒−𝑒𝑒−

Leakage
current

Previous
task

Analogical Modeling

Model

Perceptron Controller Refresher

Memory

New
task

Catastrophic
forgetting

Dynamic
Allocate

perceptive
information

Data
set

a b

Figure 2: Continual relation extraction model framework inspired by the DRAM structure. Left: Architecture of DRAM cell
leakage current and refresh circuits in DRAM arrays. Right: The model framework obtained through analogy modeling with
DRAM, in which the catastrophic forgetting is similar to the leakage current. The main workflow is: after sensing the model’s
learning performance on previous tasks using perceptrons, the controller receives the information and dynamically allocates
memories, issuing commands that cause the refresher to refresh the memories. The model learns the new task and reviews the
learned knowledge using mixed-memory data.

observed relations, denoted as 𝐶𝑘−1
past = {𝐶𝑟1

𝑝 ,𝐶
𝑟2
𝑝 , ...,𝐶

𝑟𝑁
𝑝 }. Within

this context, 𝑁 signifies the size of the historical relation set 𝑅𝑘−1past =

{𝑟1, 𝑟2, ..., 𝑟𝑁 }. For any relation 𝑟 ∈ 𝑅𝑘−1past , we obtain the prototype
P𝑟 as the relation representation, along with the sample set 𝐶𝑟

𝑝 .
Assuming the encoder 𝑓 (·) with parameter 𝜃 , the perceptual score
𝐹𝑟 for the selected relation 𝑟 can be calculated as following:

𝐹𝑟 =
1

|𝐶𝑟
𝑝 |

∑︁
(𝑠𝑖) ∈𝐶𝑟

𝑝

Sim (P𝑟 , 𝑓 (𝑠𝑖)𝜃) (2)

where Sim(P𝑟 , 𝑓 (𝑠𝑖)𝜃) is the vector dot product for relation repre-
sentation and instance feature. Then perform this operation on the
set of seen relations 𝑅𝑘−1past and concatenating all the results gives
F = [𝐹1, 𝐹2, ..., 𝐹𝑁], characterizing how well the set of historical
relations performs on the model. In order to scale up the numbers
for those relations that perform poorly, we employ the softmax
function, subsequently transforming F with a uniform vector, E.
The result perceptive message𝑀𝑒𝑠 will be sent to the controller for
assigning memory.

𝑀𝑒𝑠 = Softmax (E − F) (3)

Controller. Before the perceptive message𝑀𝑒𝑠 is sent, the con-
troller engages in crucial preparatory steps comprising memory
expansion and selecting informative samples. In the process of
memory expansion, given the conservation of 𝐸𝑁 samples for each
relation, the memory size |M| will be expanded to:

|M| = |M| + 𝐸𝑁 · |𝑅𝑘train | (4)

𝑅𝑘train represents the relation set of the current training task. All
samples relating to a given relation 𝑟 are systematically ranked
in descending order based on their proximity to the prototype
representation P𝑟 . This process results in a set of informatively

ranked samples, represented as 𝐶𝑟
sorted, prioritizing samples based

on their relevance. Upon receipt of 𝑀𝑒𝑠 , the controller promptly
derives the requisite number of samples for memory allocation for
each relation:

Q = (𝐸𝑁 · |𝑅𝑘train |) ⊙ 𝑀𝑒𝑠 (5)

where Q = {𝑞1, 𝑞2, ...𝑞𝑁 } is the storage vector with 𝑞𝑖 symbolizing
the sample count allocated to the 𝑖𝑡ℎ relation. ⊙ represents the dot
product of vectors. We then select the top 𝑞𝑖 samples from each set
corresponding to relation 𝑟𝑖 , denoted as 𝐶𝑟𝑖

𝑞𝑖 . The memory storage
relation for the current task is thus formulated as:

M𝐴 =

{
𝐶
𝑟𝑖
𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝑁,∀𝑟 ∈ 𝑅𝑘train

}
(6)

M𝐴 represents the memory assignment in the current task T𝑘 ,
then the new memory is updated to M = M + M𝐴 . Afterward,
the controller has the additional task of setting the appropriate size
of the memory cells and the frequency of replays for subsequent
memory refreshing. The controller sends the refreshing strategies
stored internally to the refresher and waits for the next round of
tasks to be processed.

Refresher. When the 𝑘𝑡ℎ task arrives, the refresher is immedi-
ately activated, processing parameters relayed from the controller,
and then adopt the refreshing method according to the delineated
strategy. After that, the refresher starts the update module of the
prototype and performs the memory refresh. We have built in three
strategies of centralized, distributed, and asynchronous refreshing
in the refresher, but in order to ensure fairness, the total amount of
memory used by these three strategies is the same.

3.3 Refreshing strategy
This section introduces three refreshing strategies, which attempt
to expound existing memory-based methods and unify them within

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction WWW ’24, May 13–17, 2024, Singapore, Singapore

this theoretical system. When the 𝑘𝑡ℎ task T𝑘 arrives at refresher,
the total memory M of the previous k-1 tasks has already been
acquired through the dynamic storage mechanism. The refresher
further extracts the training dataset, 𝐶𝑘

train, associated with T𝑘 .
Subsequent action involves model training with memory refreshing
in E epochs. Themixed-memory data for this purpose is represented
as Dmix. We define the three refresh strategies as follows:

Centralized refresh distinctly earmarks a specified duration
within the training phase exclusively for memory refreshing. When
centralized refreshing starts, the refresher acquires the predefined
number of memory refreshing epochs ℎ, and then divides the total
amount of memoryM to obtain the centralized refreshing memory
size |M𝑐 | = |M|/ℎ. Over time, if current epoch 𝑗 is smaller than the
total number of epochs E, the mixed-memory dataDmix, align with
𝐶𝑘
train. Conversely, when the epoch 𝑗 surpasses E, thenDmix = M𝑖

𝑐

where M𝑖
𝑐 represents the 𝑖𝑡ℎ block ofM with size |M𝑐 | memory.

Distributed refresh in DRAM is the process of putting the re-
plenishment of charge into the cycle after each read or write. This
is similar to how the distributed refreshing strategy mixes mem-
ories into each training data before training. When the refresher
captures distributed refreshing strategy, without setting additional
parameters but directly slices the total amount of memory M into
memory cells M𝑑 according to the total number of epochs E. The
mixed-memory data for epoch 𝑗 is denoted as D 𝑗

mix = 𝐶𝑘
train +M 𝑗

𝑑
,

subsequently serving as the direct input data for training the model.
The adoption of asynchronous refresh strategies has become

commonplace in the contemporary DRAM space. This strategy
strikes a balance between excessive refreshing and dedicating an
extensive block of time for refreshing. Our proposed asynchronous
refreshing requires the refresher to set an additional parameter I,
representing the interval for memory refreshing operations. Then
the refresher will give the mixed-memory data D𝑙

mix = 𝐶𝑘
train +

M𝑙
𝑎 for 𝑙 ∈ [I, 2I, ...]. M𝑙

𝑎 represents the 𝑙𝑡ℎ block ofM with size
|M |
⌊E/I⌋ memory. In epochs other than these specific intervals, the
mixed-memory dataset defaults toDmix = 𝐶𝑘

train. To the best of our
knowledge, asynchronous refresh is the first proposed in terms of
memory refreshing strategies for continual learning.

3.4 Learning Procedure
Before initiating the training of the 𝑘𝑡ℎ task, the perceptron module
evaluates the performance of previously seen relations on the cur-
rent model. Subsequently, it linearly transforms this evaluation into
a perceptive message that is communicated to the controller. Once
the controller completes preparatory tasks such as memory expan-
sion, it dynamically allocates memory based on the perceptive mes-
sage and generates a new memory set denoted asM. When the 𝑘𝑡ℎ

task arrives and the prototype representation I𝑘 = {P1,P2, . . .} is
initialized, the refresher module combines memory cells to create
mixed-memory data𝐶𝑘

mix = 𝐶𝑘
train +M according to the selected re-

freshing strategy. The model is then trained using a cross-entropy
loss function to learn the consistency between the old and new
distributions. For any 𝑠 ∈ 𝐶𝑘

mix, P represents the relational repre-
sentation corresponding to 𝑠 in I𝑘 . Assuming 𝑃 represents the true

distribution of 𝐶𝑘
mix, the loss function is defined as follows:

LC (𝜃) = E𝑠∼𝑃 [− log𝑄 (Sim(𝑓𝜃 (𝑠),P))] (7)

where 𝑄 (Sim(𝑓𝜃 (𝑠),P)) represents the relational distribution of
model output. To further distinguish similar prototype represen-
tations, we also designed the contrastive loss function. For any
P ∈ I𝑘 , assuming that Ω is the prototype representation con-
taining P and those similar to P, and Γ is the expected one-hot
distribution generated from Ω, the contrastive loss function can be
defined as:

LA (𝜃) = EP∼Γ [− logΩ (P)] (8)

Assuming that 𝜆1 and 𝜆2 are the weighting coefficients of the above
two loss functions, we can obtain the final loss function as:

L(𝜃) = 𝜆1 · LC (𝜃) + 𝜆2 · LA (𝜃) (9)

In the inference phase, we obtain the encoded representation of
the sentence and compute the distance matrix with the prototype
representation. From the distance matrix, we acquire the type of
relation to the model output, which is compared with the label, and
used to compute the final whole accuracy.

4 EXPERIMENTS
4.1 Benchmark and Evaluation Metric
Benchmark.Our experiments are conducted on twowell-established
benchmarks, in accordancewith prior researchwork [3]: (1) FewRel
[11] is a large-scale dataset that contains 100 relations, each of
which has 700 instances. Following NK-CRE [3], we use the pub-
licly accessible 80 relations in the training and validation sets into
8 tasks containing 10 relations (10-way). In order to align the SOTA
method [3], we carried out the experiment 10-way-5-shot on the
FewRel Benchmark. (2) In addition to demonstrating the generaliz-
ability of our paradigm, we also conduct experiments on TACRED,
which is a RE dataset proposed by [40]. Different from FewRel, it
contains 42 relations and over 100,000 instances. In NK-CRE, it
remains 41 relation classes and 68,438 instances after filtering out
the relation "n/a". In this paper, we also conduct the experiment
5-way-5-shot on the TACRED.
Evaluation metric. At time step 𝑘 , we first acquire the test sets
𝐶𝑘
test =

⋃𝑘
𝑖=1𝐶

𝑖
test of all seen tasks {T 𝑖 }𝑘

𝑖=1. Then evaluate the
model performance on 𝐶𝑘

test with the whole accuracy. It can be
defined as:

𝐴𝐶𝐶𝑤ℎ𝑜𝑙𝑒 = 𝑎𝑐𝑐
𝑓 ,𝐶𝑘

test
(10)

Owing to the whole test set of all tasks used to calculate the accu-
racy, it actually reflects the model’s ability to alleviate catastrophic
forgetting while effectively assimilating novel knowledge.

4.2 Baselines
DRAM-like architecture with an asynchronous refreshing strategy
is to extract relation with continual learning. Given that recent
models have not employed the centralized refresh mechanism, our
experiments also revealed its inadequacy in this context. Conse-
quently, we opted not to include the centralized refresh baseline
for comparison. The compared baselines are set as follows:

WWW ’24, May 13–17, 2024, Singapore, Singapore Tianci Bu et al.

EMAR: Episodicmemory activation and reconsolidation (EMAR)
is a pioneering method [9] to alleviate the problem of catastrophic
forgetting in continual relation learning. EMAR uses relation pro-
totypes for memory reconsolidation exercises to maintain a stable
understanding of old relations while learning new ones.

ERDA: ERDA [27] is an innovative method that defines the for-
mulation of the challenging problem of continual few-shot relation
learning (CFRL). They incorporate embedding space regulariza-
tion and data augmentation to handle the incompatibility between
feature distributions of new and previous tasks.

ConPL: A current SOTA method [3] for N-way-K-shot Contin-
ual Relation Extraction (NK-CRE) task. ConPL consists of three
modules: prototype-based classification, a memory-enhanced mod-
ule for vital sample selection, and a consistent learning module to
alleviate catastrophic forgetting.

4.3 Main Results
The whole accuracy (%) across different methods, along with their
extended experiments on the two benchmarks is presented in Tab.
1. We can observe that:

(1)With equal memory samples, DAAR outperforms on both
benchmarks. DAAR approaches the first task as a standard relation
extraction task; hence, the number of retained relation samples
does not impinge on its performance of the first task. For the eighth
task, our method achieves 86.07% and 87.71% when storing 1 and 2
samples on FewRel, and 75.59% and 77.89% when storing 1 and 2
samples on TACRED. It can be observed that DAAR still maintains
higher performance than ConPL, especially when the storage rela-
tion sample is 2. Although the performance of DAAR on the first
task of TACRED 95.17% is slightly lower than the performance of
97.89% achieved by ConPL when the storage relation sample is 2.
DAAR’s dynamic memory and asynchronous refresh quickly play
a role in making forgetting speed significantly slowed down, and
the second task can still lead the performance by 2.28% when the
performance of the first task lags 2.72%. Besides, our method con-
tinues to maintain superior and smooth performance in subsequent
tasks. As shown in Figure 3, DAAR maintains the advantage of slow
forgetting compared to other methods on most tasks.

(a) All methods in FewRel (b) All methods in TACRED

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Figure 3: Whole accuracy (%) of different methods after train-
ing on a series of tasks of FewRel benchmark and TACRED
benchmark.

(2) Increasing the number of memory samples corresponding
to each relation helps reduce forgetting of the model. For ERDA,
the performance improvement is not obvious when increasing the

number of relational memory samples on the first two tasks. Never-
theless, when the model learns more tasks, larger memory samples
significantly improve the performance of subsequent tasks. ConPL
has also been improved by increasing the number of memory sam-
ples. However, the impact is more obvious on DAAR. On the eighth
task of TACRED, the performance increased by 2.3%. On FewRel,
there was also a 1.74% performance improvement. For DAAR, the
reason for this result is more relational memory samples increase
the allocation space for dynamically allocated memory operations
performed by the perceptron and controller working together, i.e.
for those relations with poor performance, more memory samples
can be allocated for consolidation. In Figure 3, it is evident that the
method with more memory samples markedly outperforms the one
with fewer samples.

4.4 Ablation Study
We conducted two ablation experiments on FewRel, includingmixed
multi-style module experiments and cross-model refreshing experi-
ments to verify the effectiveness of each module in our proposed
DRAM-like architecture and the generalizability of the asynchro-
nous refresh strategy.

Mixed multi-style module experiments. In order to investi-
gate the effectiveness of eachmodule in the DRAM-like architecture,
we add the perceptron, controller, and refresher to the architecture
one by one, while loading each of the three refreshing strategies
with the refresher to validate their effects, as shown in Tab. 2. To
remove certain modules while the remaining modules still work, we
use some methods from ConPL[3] on each auxiliary task to comple-
ment the removed modules. Pro− uses the basic prototype module
with memory replay from ConPL, while Pro(C) represents our pro-
totype learning module with a centralized refreshing strategy, and
D, A denote distributed refreshing and asynchronous refreshing, re-
spectively. The difference between Pro−+P and Pro−+PC is that the
former perceives the information and then proceeds to distribute
the relational memory samples equally, whereas the latter utilizes
the perceived information to dynamically distribute the memory.
From the first three rows of Tab. 2, it is evident that dynamic mem-
ory allocation, facilitated by the cooperative functioning of the
perceptron and the controller, yields the highest overall accuracy.
Examining the last three rows of 2, it can be argued that the asyn-
chronous refresh strategy further enhances performance within the
same DRAM-like architecture. A comparative analysis between the
first three rows and the last three reveals that the DRAM-like archi-
tecture holds a distinct advantage over the decentralized modules,
a superiority further elucidated in Fig. 4.

Cross-model refreshing experiments. To verify the gener-
alizability of the asynchronous refreshing strategy, we extend 2
relational memory samples for ConPL and EDRA and asynchronous
refreshing experiments on FewRel and TACRED. The symbols in
Tab. 3 represent the same meaning as in Tab. 1, with "asyn" rep-
resenting the addition of an asynchronous refresh mechanism. In
the FewRel benchmark, when the seed is set to 100, the first three
rows of the table are the expansion experiments corresponding
to EDRA, and the last three rows are the expansion experiments
corresponding to ConPL, we can observe that applying the asyn-
chronous refresh strategy on the ConPL and ERDA models still

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 1: Whole accuracy (%) of different methods after training on a series tasks of 10-way-5-shot of FewRel benchmark and
5-way-5-shot of TACRED benchmark. The unmarked methods are directly from [3] and we reproduce results in publicly
available codebases of ConPL and ERDA. * represents experiments that initially store onememory sample for each seen relation
and † represents initially storing two memory samples for each seen relation.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

EMAR[9] 92.03 78.87 72.81 69.19 68.05 66.23 63.68 61.77
ERDA[27] 96.38 88.91 83.10 79.73 74.83 72.84 70.28 68.07
ConPL[3] 95.72 93.53 91.31 89.95 88.93 88.39 87.43 85.77

ERDA*[27] 92.17 79.59 70.85 63.82 60.50 57.97 54.77 53.26
ConPL*[3] 95.65 93.45 91.36 89.83 89.00 88.19 87.52 85.21
DAAR*(Ours) 98.50 96.50 95.17 91.40 89.92 88.85 87.51 86.07
ERDA†[27] 91.82 79.52 72.84 65.48 62.85 60.08 58.18 55.79
ConPL†[3] 95.87 93.23 91.58 90.18 89.40 88.76 87.96 86.46
DAAR†(Ours) 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.81

5-way-5-shot of TACRED

EMAR[9] 68.71 51.53 43.86 38.54 34.08 32.06 29.90 27.87
ERDA*[27] 69.79 47.11 39.13 35.01 31.71 27.94 22.97 22.77
ConPL*[3] 97.03 87.70 85.60 81.25 80.32 78.70 77.32 75.14
DAAR*(Ours) 95.17 91.93 87.48 83.91 83.34 81.76 78.78 75.59
ERDA†[27] 71.46 50.41 41.49 35.58 32.19 28.11 23.02 22.82
ConPL†[3] 97.89 89.79 87.43 84.20 82.39 79.96 79.12 76.93
DAAR†(Ours) 95.17 92.07 88.41 85.92 82.68 79.49 79.73 77.89

Table 2: Ablation experiments on the FewRel benchmark
are used to validate the effectiveness of each module. Pro−

represents basic prototype learning under the hybrid refresh
method used in [3]. P, C and R stand for perceptron, con-
troller and refresher respectively. C, D, A are abbreviations
for centralized, distributed and asynchronous refreshing.

Method T1 T2 T3 T4 T5 T6 T7 T8

Pro− 95.38 92.82 90.51 88.42 87.22 86.68 85.56 83.80
Pro−+P 95.87 93.23 91.58 90.18 88.94 87.49 86.88 85.05
Pro−+PC 96.63 94.27 91.98 90.20 89.39 88.79 87.98 86.49

Pro(C)+PCR 98.50 97.15 95.50 92.00 91.04 90.12 88.59 87.05
Pro(D)+PCR 98.50 97.35 95.43 92.20 90.66 90.03 88.90 87.81
Pro(A)+PCR 98.50 97.60 95.70 92.60 91.10 90.32 88.66 87.98

allows both models to obtain some performance improvement, and
also aids in verifying that multiple samples are useful for modeling
to alleviate forgetting.

4.5 Forgetting Analysis
To further analyze the degree of forgetting of our model in continual
relation extraction, we introduce an enhanced measure of prototype
forgetting. This measure quantifies the forgetting of the prototype
for the 𝑖𝑡ℎ task after training the 𝑗𝑡ℎ task the as follows:

𝐹𝑖, 𝑗 =
1

|𝑅𝑖 | · 𝑗

𝑗∑︁
𝑘=𝑖

𝑅𝑖∑︁
𝑟

max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟) (11)

A
cc

ur
ac

y
(%

)

Figure 4: The analysis result of the modules in DRAM-like
structure with asynchronous refreshing strategy.

where 𝑎𝑘,𝑟 represents the accuracy on relation 𝑟 for the set of
relations 𝑅𝑖 belonging to task 𝑖 after the 𝑘𝑡ℎ task training. The
max(0, 𝑎𝑘,𝑟 − 𝑎 𝑗,𝑟) is expressed in the relation 𝑟 , the degree of
forgetting at training prior 𝑘𝑡ℎ task versus subsequent 𝑗𝑡ℎ task.
We provide the degree of forgetting for the first task when trained
sequentially on the subsequent four tasks with ConPL and DAAR,
as shown in Tab. 4. We can observe that DAAR forgets a little less

WWW ’24, May 13–17, 2024, Singapore, Singapore Tianci Bu et al.

Table 3: Ablation experiments on the FewRel benchmark and the TACRED benchmark(in appendix A.1) are used to validate
the effectiveness of increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols
represent the same meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

(a) t-SNE visualization (task-1) (b) t-SNE visualization (task-2) (c) t-SNE visualization (task-3) (d) t-SNE visualization (task-4) (e) t-SNE visualization (task-5)

25

64

17

6 21

65

14
49

78

12

25

64

17

6

21

65

14

78

12

49 25

64
17

6

21

65

14
49

78

12

25

64

17

6

21

65

14

49
78

12

25

64

17

6

21

65
14

49

78

12

64

Figure 5: t-SNE visualization of first task features learned by DAAR at training Task-1 to Task-5 on FewRel. The first task
contains a total of ten relations, and we characterize the different classes of relations with different colors.

Table 4: ConPL and DAAR methods of forgetting Task-1 for-
getting(%) after learning Task-1 to Task-5. † represents ini-
tially storing two memory samples for each seen relation.

Method
Task index

T1 T2 T3 T4 T5

ConPL†[3] 0.00 3.25 3.63 6.20 6.50
DAAR† 0.00 0.95 3.57 3.18 5.22

compared to ConPL for the same measure of forgetting level, which
explains the higher accuracy of DAAR after the first task.

To better observe how DAAR learns the features of the first task
when subsequent tasks are learned continuously, we used t-SNE to
visualize the ten relation categories of the first task and plotted the
change in features of Task-1 when learning Task-1 to Task-5, as
depicted in Fig. 5. A slightly larger change that appears in Fig. 5(c) is
the feature of Task-1 when the DAAR has finished learning Task-3,
although only by flipping the top and bottom features. After this,
the feature of Task-1 is corrected again after learning Task-4. This
phenomenon is consistent with Tab. 4, which shows an increase
followed by a decrease in the DAAR’s forgetting of Task-1 after
learning Task-3 and Task-4. This method of forgetting analysis mea-
sures the degree of forgetting primarily through repeated measures
of the effect of a subsequent task on a previous one.

5 CONCLUSION
In this paper, we have presented a novel DRAM-like architecture
and an asynchronous refresh strategy, specifically designed to tackle
catastrophic forgetting in continual relation extraction scenarios.
Our method, integrating a perceptron, a controller, and a refresher,
innovatively enables dynamicmemory allocation and asynchronous
refresh strategy. Our experiments demonstrated that this approach
not only effectively addresses relation imbalance but also achieves a
crucial balance between over-memorization and over-fitting. Signif-
icantly, our strategy has been shown to enhance the performance of
existing methods in our ablation study. This highlights its potential
for wider application in various continual learning scenarios. Our
approach effectively bridges DRAM with the practical needs of
continual relation extraction, facilitating more accurate and effi-
cient knowledge extraction. Looking ahead, we plan to develop our
asynchronous refresh strategy and DRAM-like architecture into
a modular framework. This advancement will offer versatile and
robust solutions to the myriad challenges present in the domain of
continual learning.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (72025405, 72088101), the National Social Science
Foundation of China (22ZDA102), the Hunan Science and Technol-
ogy Plan Project (2020TP1013, 2023JJ40685), and the Innovation
Team Project of Colleges in Guangdong Province (2020KCXTD040).
The authors declare that they have no conflict of interest.

DRAM-like Architecture with Asynchronous Refreshing for Continual Relation Extraction WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel Polleres,

and Katja Hose. 2021. WiseKG: Balanced access to web knowledge graphs. In
Proceedings of the Web Conference 2021. 1422–1434.

[2] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elho-
seiny. 2018. Efficient lifelong learning with a-gem. ICLR (2018).

[3] Xiudi Chen, Hui Wu, and Xiaodong Shi. 2023. Consistent Prototype Learning
for Few-Shot Continual Relation Extraction. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
7409–7422.

[4] Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang Cheng, Jingjie Yi, and
Yanghua Xiao. 2021. Refining sample embeddings with relation prototypes to
enhance continual relation extraction. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). 232–243.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[6] Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Question answering over
freebase with multi-column convolutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 260–269.

[7] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. 2017. Pathnet: Evolution
channels gradient descent in super neural networks. CoRR (2017).

[8] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences 3, 4 (1999), 128–135.

[9] Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun,
and Jie Zhou. 2020. Continual relation learning via episodic memory activation
and reconsolidation. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. 6429–6440.

[10] Xu Han, Pengfei Yu, Zhiyuan Liu, Maosong Sun, and Peng Li. 2018. Hierarchical
relation extraction with coarse-to-fine grained attention. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing. 2236–2245.

[11] Xu Han, Hao Zhu, Pengfei Yu, ZiyunWang, Yuan Yao, Zhiyuan Liu, and Maosong
Sun. 2018. Fewrel: A large-scale supervised few-shot relation classification dataset
with state-of-the-art evaluation. arXiv preprint arXiv:1810.10147 (2018).

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[13] Chengwei Hu, Deqing Yang, Haoliang Jin, Zhen Chen, and Yanghua Xiao. 2022.
Improving continual relation extraction through prototypical contrastive learning.
arXiv preprint arXiv:2210.04513 (2022).

[14] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. 2016. Less-forgetting
learning in deep neural networks. arXiv preprint arXiv:1607.00122 (2016).

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[16] Na Lei, Yang Guo, Dongsheng An, Xin Qi, Zhongxuan Luo, Shing-Tung Yau, and
Xianfeng Gu. 2019. Mode collapse and regularity of optimal transportation maps.
arXiv preprint arXiv:1902.02934 (2019).

[17] Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2016.
Neural relation extraction with selective attention over instances. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). 2124–2133.

[18] Xialei Liu, MarcMasana, Luis Herranz, Joost Van deWeijer, AntonioM Lopez, and
Andrew D Bagdanov. 2018. Rotate your networks: Better weight consolidation
and less catastrophic forgetting. In 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2262–2268.

[19] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for
continual learning. Advances in neural information processing systems 30 (2017).

[20] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. 1995. Why
there are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of learning and
memory. Psychological review 102, 3 (1995), 419.

[21] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of learning
and motivation. Vol. 24. Elsevier, 109–165.

[22] FranckMichel, Fabien Gandon, Valentin Ah-Kane, Anna Bobasheva, Elena Cabrio,
Olivier Corby, Raphaël Gazzotti, Alain Giboin, Santiago Marro, Tobias Mayer,
et al. 2020. Covid-on-the-Web: Knowledge graph and services to advance COVID-
19 research. In The Semantic Web–ISWC 2020: 19th International Semantic Web
Conference, Athens, Greece, November 2–6, 2020, Proceedings, Part II 19. Springer,
294–310.

[23] Seyedali Mirjalili and Seyedali Mirjalili. 2019. Genetic algorithm. Evolutionary
Algorithms and Neural Networks: Theory and Applications (2019), 43–55.

[24] Makoto Miwa and Mohit Bansal. 2016. End-to-end relation extraction using
lstms on sequences and tree structures. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (2016),
1105–1116.

[25] Mohsen Paniri, Mohammad Bagher Dowlatshahi, and Hossein Nezamabadi-Pour.
2020. MLACO: A multi-label feature selection algorithm based on ant colony
optimization. Knowledge-Based Systems 192 (2020), 105285.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[27] Chengwei Qin and Shafiq Joty. 2022. Continual few-shot relation learning
via embedding space regularization and data augmentation. arXiv preprint
arXiv:2203.02135 (2022).

[28] Roger Ratcliff. 1990. Connectionist models of recognition memory: constraints
imposed by learning and forgetting functions. Psychological review 97, 2 (1990),
285.

[29] Hippolyt Ritter, Aleksandar Botev, and David Barber. 2018. Online structured
laplace approximations for overcoming catastrophic forgetting. Advances in
Neural Information Processing Systems 31 (2018).

[30] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. CoRR (2016).

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolu-
tional networks. In The Semantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, 593–607.

[32] Sebastian Thrun. 1998. Lifelong learning algorithms. In Learning to learn. Springer,
181–209.

[33] Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer Science &
Business Media.

[34] Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. 2021. Rehearsal revealed:
The limits and merits of revisiting samples in continual learning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 9385–9394.

[35] Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and
William Yang Wang. 2019. Sentence embedding alignment for lifelong relation
extraction. arXiv preprint arXiv:1903.02588 (2019).

[36] TongtongWu, Xuekai Li, Yuan-Fang Li, Gholamreza Haffari, Guilin Qi, Yujin Zhu,
and Guoqiang Xu. 2021. Curriculum-meta learning for order-robust continual
relation extraction. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 10363–10369.

[37] Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, Yuxin Peng, and Zheng Zhang. 2014.
Error-driven incremental learning in deep convolutional neural network for
large-scale image classification. In Proceedings of the 22nd ACM international
conference on Multimedia. 177–186.

[38] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking
for academic search via knowledge graph embedding. In Proceedings of the 26th
international conference on world wide web. 1271–1279.

[39] Friedemann Zenke, Ben Poole, and Surya Ganguli. 2017. Continual learning
through synaptic intelligence. In International conference on machine learning.
PMLR, 3987–3995.

[40] Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D
Manning. 2017. Position-aware attention and supervised data improve slot filling.
In Conference on Empirical Methods in Natural Language Processing.

[41] Kang Zhao, Hua Xu, Jiangong Yang, and Kai Gao. 2022. Consistent representation
learning for continual relation extraction. arXiv preprint arXiv:2203.02721 (2022).

[42] Zhi-Hua Zhou. 2022. Rehearsal: learning from prediction to decision. Frontiers
of Computer Science 16, 4 (2022), 164352.

A EXTERNAL RESULTS
A.1 Ablation Study
The extended experiments of EDRA and ConPL on the TACRED
dataset are supplemented here, as shown in Tab. 5, which is consis-
tent with the results in the main text.

B IMPLEMENTATION DETAILS.
Our experimental setup was conducted on a single NVIDIA 3090
GPU utilizing the PyTorch framework [26]. Our DRAM-like ar-
chitecture leverages BERTBASE [5] as the backbone encoder, with
the base prompt template being e1 [MASK] e2. Due to hardware
constraints, we employed a batch size of 4. Gradient updates were

WWW ’24, May 13–17, 2024, Singapore, Singapore Tianci Bu et al.

Table 5: Ablation experiments on the FewRel benchmark and the TACRED benchmark are used to validate the effectiveness of
increasing the memory sample size and the asynchronous refreshing mechanism, The individual symbols represent the same
meaning as in Tab. 1 and asyn denotes the asynchronous refreshing added to the method.

Method
Task Index

T1 T2 T3 T4 T5 T6 T7 T8

10-way-5-shot of FewRel

ERDA[27] 92.80 76.90 67.83 62.70 58.70 55.78 51.11 51.39
ERDA†[27] 92.20 76.50 71.00 61.30 63.30 57.00 53.99 54.13
EDRA†[27] + asyn 93.80 78.55 69.03 66.40 65.42 61.55 57.36 56.55
ConPL[3] 94.30 93.60 92.03 88.63 88.32 86.70 86.33 84.93
ConPL†[3] 95.90 93.70 92.20 88.70 88.34 87.33 87.60 86.74
ConPL†[3] + asyn 96.40 94.85 92.90 90.05 89.26 88.37 88.75 87.23

5-way-5-shot of TACRED

ERDA[27] 70.08 41.30 39.40 37.58 29.18 23.08 20.97 21.21
ERDA†[27] 71.43 45.73 42.53 43.37 33.66 28.40 22.12 22.01
ERDA†[27] + asyn 75.10 49.53 44.38 39.33 36.04 29.10 24.12 23.66
ConPL[3] 97.37 84.68 81.54 79.77 81.21 76.96 74.49 73.23
ConPL†[3] 98.25 84.46 80.92 80.68 80.93 76.17 76.33 75.12
ConPL†[3] + asyn 97.37 85.78 81.64 81.59 81.98 79.27 76.60 74.93

facilitated using the Adam optimizer, initialized with a learning
rate of 2𝑒−5.

In addition, the number of samples 𝐸𝑁 that are kept in memory
of Eq. 4 is set to 2. The loss weights, denoted as 𝜆1 and 𝜆2, are both
set to 1.0. As part of our refreshing strategy, we conduct a total of
E = 6 epochs, with an asynchronous refreshing interval denoted
as I = 2. Notably, we re-performed the experiments for ERDA and

ConPL with memory samples of 1 and 2 for each relation under the
equal memory samples for eight tasks for a fair comparison.

The method proposed in this paper can regulate memory storage
by changing the 𝐸𝑁 parameter in Eq. 4. In order to investigate the
effect of memory size on forgetting, we conducted memory expan-
sion experiments on both ERDA and ConPL. For EMAR, we cannot
extend the investigation due to data limitations. The performance
of EMAR in the table is derived from [3].

	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Problem Definition and Background
	3.2 DRAM-like Architecture
	3.3 Refreshing strategy
	3.4 Learning Procedure

	4 Experiments
	4.1 Benchmark and Evaluation Metric
	4.2 Baselines
	4.3 Main Results
	4.4 Ablation Study
	4.5 Forgetting Analysis

	5 Conclusion
	Acknowledgments
	References
	A External Results
	A.1 Ablation Study

	B Implementation Details.

